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ABSTRACT

Convolutional neural networks (CNNs) have demon-
strated a strong ability to extract semantics from images
during object detection; however, the extracted semantics are
typically have strong scale priors for a specific circumstance.
In this paper, we investigate the influence of head scale and
contextual information, and then propose a scale-invariant
method for head detection. Our method can dynamically
detect heads depending on the complexity of the image. It
uses an extra feature map to represent the scale information
of the spatial relationship, and then uses this feature map
for auxiliary detection. Particularly, we exploit several new
techniques, including contextual information, scale invari-
ance, and hard example mining. We evaluated our method
on three head datasets and achieved state-of-the-art results
for the Brainwash dataset, HollywoodHeads dataset, and
SCUT-HEAD dataset.

Index Terms— Object detection, convolutional neural
network

1. INTRODUCTION

Human head detection plays an essential role in modern
people-counting-relevant applications and intelligent mon-
itoring. Although tremendous strides have been made in
general object detection, head detection in a crowd scene
is still a challenging task because of high diversity, heavy
occlusion, dynamic blur, low resolution, and rare features.

Many methods have been proposed to address this task.
Gao et al.[1] generated proposals using HOG and used a
CNN-SVM classifier to score the area. Stewart et al.[2]
applied LSTM to decode representations into a set of detec-
tions. Li et al.[3] combined the region score and local score
to assess a human head. However, all these approaches have
limited performance.

Unlike faces, heads have few features. For instance, sun-
glasses or a gauze face mask can be features in some sense,
whereas the back of a head in the distance can only be re-
garded as a dot. Worse still, heads always encounter the sce-
nario of low resolution, blur, and occlusion. Identifying heads
merely from the heads themselves is difficult. Inspired by
HR[4] and GBD-net[5], which demonstrate the utility of con-

textual information, we introduce this concept to assist re-
detection in our method rather than regarding the second step
in Gao et al.s approach [1] as a classification task. We discuss
the amount of contextual information that should be preserved
for best performance in Section 2.4.

Another challenge is scale invariance. Most prior work
set anchors to various sizes and aspect ratios to match dif-
ferent objects [6] [7] [8] [9]; however, these methods cannot
eliminate the impact of scale thoroughly. Hu et al.[4] used
the image pyramid; however, it is memory intensive. Yang et
al.[10] and Zhang et al.[11] showed that modeling different
filters for objects with different sizes is superior to providing
results on different feature maps, although it is considered as
expensive in terms of computational resources.

Thus, we question whether there is a “one-template-fits-
all method to solve the multi-scale problem. We first confirm
two hypotheses from empirical evidence: (i) roughly predict-
ing the size of a head is easier than predicting the location
and boundary precisely; and (ii) some regions become easy
to detect when the area is resized into an appropriate size.
Based on these observations, we propose the techniques of
ScaleMap and area normalization, which make the second
sub-network sensitive to a specific scale.

In this paper, we propose a new method called the
ScaleMap detector (SMD) for head detection. First, a multi-
task network roughly predicts heads and provides a ScaleMap
that contains scale information about the scene. The weakly
detected regions are then determined and normalized using
the ScaleMap. The second sub-network then re-detects the
normalized area and provides a more precise result. In our
approach, choosing regions that are suited to the circum-
stances is critical. We consider scale invariance, contextual
information, and hard example mining and then elaborate the
region proposal section based on this.

Our contributions are summarized as belows:
• We present a novel method that can detect images from

0.1s to 0.4s on NVIDIA TitanXp, depending on the
complexity of the image.
• Scale invariance, context information, and hard exam-

ple mining are proposed to be useful for small objects.
•We achieve state-of-the-art results on three head detec-

tion datasets: the Brainwash dataset, HollywoodHead
dataset, and our SCUT-HEAD dataset.
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Fig. 1: Overall architecture of SMD: (1) a multi-task CNN is applied to provide a ScaleMap; (2) region proposal provides the weak detected position and
proposes the re-detected area and its size using ScaleMap; (3) a lightweight CNN then re-detects the region; and (4) final results are provided by fusing the
previous results.

2. SCALEMAP DETECTOR

2.1. Overall architecture

A lightweight network is efficient, but may fail to recognize
complex images, whereas an expensive model is a waste of
computational resources for numerous easy images. There-
fore, we propose a method that can automatically take time
based on the complexity of the image. An overview of the ap-
proach is shown in Fig. 1. Given a test image, the first multi-
task CNN is used to provide a coarse result that cues the loca-
tion of the weak detection areas. A ScaleMap can determine
how much the region should be cropped, and then normalizes
the region to 300px, thereby aiming to simplify the second de-
tection. The second subnet is sensitive to specific-sized heads
and is used to re-detect the hard but centralized object in an
easy manner. The results map to the original image and are
fused using non-maximum suppression (NMS). Thus, our ap-
proach can detect any size of head with similar accuracy by
ignoring the distribution of the training datasets.

2.2. ScaleMap

In our approach, predicting the scale of the head correctly is
of vital importance. In many weak detected occasions, such
as viewing human hands or clothes as heads, directly expand-
ing regions may not help. We present a method to generate a
ScaleMap and define every value on the map as the scale that
the head should be in that scene. Thus, detection can have a
more global view and be assisted by every other object nearby.
Regarding obtaining the ScaleMap, we first present an ap-
proach to transfer the ground-truth label to the ScaleMap. For
each point on the ScaleMap pij , we traverse all the ground-
truth boxes’ centers pk and calculate the Euclidean distance
between them. Then we set its reciprocal and to the power of
γ as the weight wk, where γ is a modulating term and set to
two in this paper. Point pij’s scale SM(pij) is the weighted
average of all the label’s scales:

SM(pij) =

∑K
k=1 wkS(pk)∑K

k=1 wk
(1)

wk = (
1

||pij − pk||2
)γ (2)

where S(pk) is the ratio between the side length of the bound-
ing box and the image, and is in the range (0, 1); that is,
for each location, the size of the head is determined by all
known head sizes, the weights are related to the distance, and
the closer the head, the heavier the weight. We can obtain

lim
pij→pk

SM(pij) = S(pk), which means that the value the
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Fig. 2: Multi-task CNN: generate the ScaleMap additionally

The architecture of the multi-task CNN is shown in Fig. 2.
In the training phase, the network first processes the input im-
age into a ScaleMap label. We then add the output ScaleMap
and calculate its loss. We add a 3×3 kernel after the back-
bone to enlarge the receptive field, followed by a 1×1 kernel
so as to map to the ScaleMap. We use our multi-task loss as
follows:

Ltotal = Lcls + Lreg + α · Lscale (3)

where Lcls and Lreg are the classification and regression loss
defined in RFCN [8], respectively. Lscale represents the dif-
ference between the estimated ScaleMap and the ground-truth
scale map converted from the label; coefficient α is set to 3e-4
in the experiments:

Lscale(Θ) =
1

2N

N∑
i=1

||Fs(Xi,Θ)− Fi||22 (4)

where Θ is the set of parameters of the CNN model, N is
the number of training samples, Xi is the input image, and
Fi is the ground truth scale map of image Xi. We use the
Euclidean distance to calculate Lscale. The loss is minimized
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using mini-batch gradient descent and backpropagation. Fig.3
shows an example of a visualized ScaleMap.

(a) (b) (c)

Fig. 3: Convert from a label to a ScaleMap: (a) the input image with head
labels; (b) the converted ScaleMap; and (c) the output of the ScaleMap from
the multi-task CNN.

2.3. Region proposal

In this section, we present our method to determine whether
the image is difficult and how to re-detect it in a better manner
in the case in which a difficult image is detected. Fig.4 shows
the flow to the proposed regions.

1).Determine the locations: Prediction with moderate
confidence always leads to uncertain circumstances compared
with an extremely high or low score. Hence, we estimate the
hard location using confidence scores. We first denote the out-
put bounding box’s center as pd. Then we set all the bounding
box centers within confidence range [0.3,0.7] as hard posi-
tions, denoted by Pw = {pd | conf(pd) ∈ [0.3, 0.7]}, where
conf(·) represents the confidence of the bounding box.

2).Determine scales: We convert locations to regions by
looking up the ScaleMap. In particular, we formulate a hard
region as a tuple {pw, lw}, where pw is the location in the im-
age and lw denotes the side length of the cropped region. We
obtain lw = β ·SM(pw), where β is the contextual coefficient
of the region and set to 5 in the experiments. Hence, the set
of hard regions can be represented as D′ = { (pw, lw) |w =
1, 2, ...,W}.

3).Delete redundancy and normalization: To improve the
speed of the model, we make redundant regions obsolete. We
traverse each tuple {pw, lw} in D′, and if location pw is cov-
ered by other regions in the set of regions D′, then we delete
{pw, lw}. The set of hard areas after traversing and deleting
redundant elements is formed as D. We then use bilinear inter-
polation to normalize the set of regions to a fixed side length
of 300px. The regions obtained at this time serve as the input
for the second network.

4).Fusion: NMS is applied twice throughout the network.
The first time is to narrow down the multi-task CNN’s outputs
asR. The second time is to acquire the fusion ofR andN (all
the output of the second subnet), which is the final output of
SMD.

In the training phase, because we can supervise the model
using the ground truth, we only have to determine the missing
or wrong bounding boxes, and then extend the area β times,
the same as the testing phase, the same as the testing phase,
and regard it as the training data of the second subnet. As
shown in Fig.4 (right), the yellow dotted rectangles represent
the proposed regions.
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Fig. 4: Region proposal: (a) in the test phase, our method first determines the
hard-detected location combined with the confidence, as shown in the blue
boxes; (b) we provide a prior estimate of the head scale from the ScaleMap
and extend the hard-detected region by β times, as shown in the yellow boxes;
(c) we also delete the redundant region to consider efficiency; and (d) then
we normalize the rest to a fixed size for further detection.

2.4. Analysis

1)Scale invariance: As shown in Fig.5, head sizes processed
during the test phase are gathered together; the second model
is also sensitive to a certain size. This matching strategy be-
tween the training and testing phases reduces the difficulty of
the secondary network.

Fig. 5: Scale invariance: (a) the distribution of object scales in the original
images; and (b) the object scale distribution in the cropped region processed
(normalized to 300px). The size is resized from a large range [10, 150] to
approximately 50px.

2)Contextual information: Heads without any context are
difficult to recognize (as shown in fig.6 (b)). Therefore, an
appropriate extended area is helpful. To integrate context,
we extend the fields of view at different times in the origi-
nal proposal box centered on the object. The relation curves
for which accuracy varies with context are shown in Fig.6(c).

(a) (b) (c)

Fig. 6: Contextual information: increasing contextual information improves
accuracy.

3)Hard example mining: Eliminating the influence of the
majority of simple examples in the training phase is essen-
tial; OHEM [12], which was first used in Fast RCNN[13],
and Focal Loss [14] in RetinaNet have all proven this. Thus,
in the training phase, we only consider false positive and false
negtive examples as training data in the second stage, which
makes the subnet more sensitive for hard examples. The anal-
ysis is presented in Section 3.1.
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3. EXPERIMENTS

3.1. Model analysis

To understand our model better, we conducted a series of
ablation experiments and analyzed how each component af-
fected the final performance. All models were trained and
tested on SCUT-HEAD1, which contains 4,405 images with
111,251 labeled heads. This dataset has 25.2 objects per im-
age, on average, and is separated into two parts. Part A in-
cludes 2,000 images taken from classroom monitoring videos
and Part B contains 2,405 images crawled from the internet

Table 1: Method ablation analysis

Methods Results
R-FCN[8] 0.835

+fixed local enlarge without context 0.835
+fixed local enlarge 0.873

+hard example mining 0.881
SMD 0.915

We considered RFCN as the baseline architecture. From
Table 1, Directly enlarging the region without contextual in-
formation resulted in no improvement. We then cropped the
image using sliding widow methods with a step every 100px,
scaled it to 300px and re-detected, with a result of 0.873, We
later adopted a hard example mining strategy, and achieved
0.881. We further used our ScaleMap method to generate the
size of the crop region, which had a result of 0.915.

3.2. Scale performance analysis

Fig. 7: Different scale performance

We also compared the performance of the RFCN and our
method (SMD) on heads with different scales. SMD can nor-
malize various scales of heads to a concentrated size; thus, the
results deteriorate slightly when heads become smaller. Fig.
7 shows that our method can manage the scenario better when
heads are small, occluded, and heavily blurred.

3.3. Evaluation on benchmarks

1) SCUT-HEAD dataset
A comparison of SMD with previous methods using the

SCUT-HEAD dataset are presented in Table 2, where P, R,
1The SCUT-HEAD dataset can be downloaded from

https://github.com/HCIILAB/SCUT-HEAD-Dataset-Release

and H represent precision, recall, and harmonic mean, respec-
tively. It can be seen that our method significantly outper-
formed all other methods with a large margin.

Table 2: Comparison between previous methods and SMD

Methods PartA PartB
P R H P R H

YOLOv2[15] 0.91 0.61 0.73 0.69 0.69 0.69
SSD[7] 0.84 0.68 0.76 0.80 0.66 0.72

FRCN[16] 0.86 0.78 0.82 0.87 0.81 0.84
R-FCN[8] 0.87 0.78 0.82 0.90 0.82 0.86

SMD 0.92 0.90 0.91 0.94 0.89 0.91

2) Brainwash head dataset
The Brainwash head dataset[17] has 91,146 heads anno-

tated in 11,917 images. All images are clipped from one cof-
fee shop’s surveillance camera. Our method performed well
again. The results are shown in Table 3. AP denotes the aver-
age precision.

Table 3: Comparison on the Brainwash dataset
Methods Con-local[18] ETE-hung[17] R-FCN f-localized[19] SMD
AP(%) 45.4 78.4 84.8 85.3 90.04

3) HollywoodHeads dataset
The HollywoodHeads dataset[18] contains 369,846 hu-

man heads annotated in 224,740 video frames from 21 Holly-
wood movies. It has a large number of images, but few heads
per image. The results are shown in Table.4. It can be seen
that, again, our method produced the best result.

Table 4: Comparison on the HollywoodHeads dataset
Methods DPM face[20] Con-local[18] R-FCN[8] SMD
AP(%) 37.4 78.4 86.3 87.6

4. CONCLUSION

In this paper, we proposed a new method called ScaleMap
to represent the scale information of a scene rather than the
object. We demonstrated its efficacy using our proposed
SMD method, which performed better compared with previ-
ous methods, particularly on small blurred heads. We ascribe
this to the better use of contextual information in a scale-
invariance manner and give a heuristic thought that the scene
may have more potential ability to assist object prediction.
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