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Abstract—This paper presents a method that can accurately
detect heads especially small heads under the indoor scene. To
achieve this, we propose a novel method, Feature Refine Net
(FRN), and a cascaded multi-scale architecture. FRN exploits
the multi-scale hierarchical features created by deep convolu-
tional neural networks. The proposed channel weighting method
enables FRN to make use of features alternatively and effectively.
To improve the performance of small head detection, we propose
a cascaded multi-scale architecture which has two detectors. One
called global detector is responsible for detecting large objects
and acquiring the global distribution information. The other
called local detector is designed for small objects detection and
makes use of the information provided by global detector. Due
to the lack of head detection datasets, we have collected and
labeled a new large dataset named SCUT-HEAD which includes
4405 images with 111251 heads annotated. Experiments show
that our method has achieved state-of-the-art performance on
SCUT-HEAD.

I. INTRODUCTION

Face detection and pedestrian detection are two important
research problems in computer vision and significant results
have been achieved in recent years. However, there are some
limitations in practical application. Face detection can only
detect faces, which means a person who turns his back to
the camera can not be detected. Due to the complexity of the
indoor scene, most parts of body are not visible. Therefore,
pedestrian detection is also hard to work in such situation.
Head detection doesn’t have these limitations, hence is more
suitable for people locating and counting, especially under
the indoor scene. However, there are also many challenges
to detect heads under the indoor scene such as the variance of
scales and appearances of heads, and small head detection.

Due to the various scales and appearances of heads, how to
exploit extracted features effectively to localize heads and dis-
tinguish them from background remains a big problem. Many
previous methods make use of multi-scale features generated
at different levels of deep convolutional neural networks.
Hariharan et al.[1] encodes concatenated rescaled feature maps
at different levels into one vector called hypercolumn for every
location. SSD[2] makes effort to employ multi-scale features
to estimate class probability and bounding box coordinates.
Lin et al.[3] proposes a top-down architecture for building
high-level semantics feature maps of different scales and make
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predictions on feature maps of different scales respectively.
Some other methods such as HyperNet[4] and ParseNet[5]
combine multiple layers together for the final predictions.
Many experiments have implied that making use of multi-
scale features makes sense. In this paper, we propose a novel
method named Feature Refine Net (FRN) for exploiting multi-
scale features. Compared to previous methods, FRN uses
channel weighting to perform feature selection by adding
learnable weights to channels of feature maps. The most useful
features for the specific domain are selected and made use
of. Moreover, feature decomposition upsampling is proposed
to upsample small feature maps by decomposing one pixel
to a related region. Resized feature maps are concatenated
and undergo an Inception-style synthesis. Experiments have
proven that FRN provides a great improvement on detection
performance.

Small heads detection is another problem that must be
addressed. Hu et al.[6] proposes a framework named HR
which resizes the input image to different scales and applies
scale invariant detectors. Inspired by attention mechanism of
human, we proposed a cascaded multi-scale architecture for
small heads detection. Rather than resizing the entire image
to different scales like HR, our method focuses on refining
local detection results by increasing the resolution of clips of
an image. The proposed architecture consists of two different
detectors named global detector and local detector respectively.
Global detector detects large heads and informs local detector
about the location of small heads. Then local detector works on
the enlarged clips which contain small heads for more accurate
small head detection.

Due to the lack of head detection datasets, we have also
collected and labeled a large-scale head detection dataset
named SCUT-HEAD. Our method reaches 0.91 Hmean on
partA and 0.90 Hmean on partB, which outperforms many
popular object detection frameworks such as Faster R-CNN[7],
R-FCN[8], YOLO[9] and SSD[2].

To summarize, the main contributions of this paper are listed
as follows:

• We propose a new model named Feature Refine Net
(FRN) for multi-scale features combination and automatic
feature selection.

• A cascaded multi-scale architecture is designed for small
heads detection.
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Fig. 1. The overall architecture of FRN (based on ResNet-50): (1) Channel weighting is applied on res3, res4 and res5 to perform feature selection. (2)
Weighted features undergo feature decomposition upsampling and their scales are increased twofold. (3) Three groups of feature maps are concatenated
together along the channel dimension. (4) We adopt Inception-style synthesis method to composite the concatenated feature maps in order to make use of the
internal relationship between channels and reduce the computation complexity.

• A head detection dataset named SCUT-HEAD with 4405
images and 111251 annotated heads is built.

II. METHOD

A. Overall Architecture

In this paper, we implement our method based on R-FCN[8]
and use ResNet-50 (ignoring pool5, fc1000 and prob layers)
as feature extractor. We denote the feature maps produced by
res3x, res4x and res5x blocks as res3, res4 and res5 respec-
tively. FRN shown in Fig.1 is inserted into R-FCN framework
and RPN works on the output of FRN for region proposals.
Then we train two modified R-FCNs named local detector
and global detector for the cascaded multi-scale architecture
which is shown in Fig.3. The cascaded multi-scale architecture
consists of four stages of (1) a global detector that works on
the entire image to detect large heads and obtains the rough
location of small heads; (2) multiple clips which have high
probability of containing small heads; (3) a local detector that
works on the clips and results in more accurate head detection;
(4) an ensemble module that merges both local and global
detectors and non maximum suppression is applied.

B. Feature Refine Net

Feature Refine Net (FRN) refines the multiple feature maps
res3, res4 and res5. Firstly, through channel weighting, each
channel of feature maps is multiplied by the corresponding
learnable weight. Then, we use feature decomposition upsam-
pling to increase the resolution of res4 and res5 twofold. Next,
feature maps are concatenated along the channel dimension.
Finally, concatenated feature maps undergo Inception-style
synthesis yielding refined features.

1) Channel Weighting: Deep convolutional neural networks
generate multiple feature maps at different layers. The feature
maps generated at low levels contain more detailed informa-
tion and have a smaller receptive field, hence are more suitable

for small object detection and precise locating. The feature
maps generated at high levels contain more abstract but coarser
information and have a larger receptive field. Therefore they
are suitable for large object detection and classification. Due to
the different characteristics mentioned above, the selection of
feature maps will be useful. The feature extractor pre-trained
on ImageNet[10] such as VGG[11], ResNet[12] has proven to
have great generalizing ability, yielding general representation
of objects. However, even after finetuning, extracted features
still reserve some characteristics of object categories in Ima-
geNet. Direct usage of features may not be the best choice.
Thus we use channel weighting to select and take advantage
of the most useful features.

Channel weighting is the key component of FRN. We
multiply each channel of feature maps with the corresponding
learnable weight parameter. It enables FRN to select which
feature to use automatically, which means the detector with
FRN will be more adaptive for the specific domain. Let i
denote the index of channel, j, k denote the spatial position of
pixels in a feature map and N denote the number of channels.
The relationship between input feature maps fC×W×H and
output feature maps FC×W×H can be expressed as follows:

Fi,j,k = wi · fi,j,k, i = 1, 2, ..., N (1)

where wi is the weight parameter. Weight parameters are
optimized during backpropagating. Let LossF denote the loss
of the output feature maps F . Then the gradients of LossF
with respect to wi and fi,j,k are as follows:

∂LossF

∂wi
=

W∑
j=1

H∑
k=1

fi,j,k (2)

∂LossF

∂fi,j,k
= wi (3)
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In our method, we apply channel weighting to res3, res4
and res5 respectively. As shown in Fig.6, the channels which
contain more useful information have higher weights. From the
analysis in section III-C and III-D, channel weighting performs
feature selection very well and raises the accuracy as well.

2) Feature Decomposition Upsampling: Previous methods
such as [3], [5] use nearest neighbor upsampling or bilinear
interpolation or even simply replication to upsample small
feature maps. Unlike previous methods, we conduct feature
maps upsampling by feature decomposition. Every pixel in a
feature map is related to a local region of feature maps at low
level. Therefore, we decompose each pixel to a N ×N region
to upsample a feature map. We use a mapping matrix MN×N
to represent the relationship between the input pixel p and the
decomposed N ×N region PN×N .

PN×N = p ·MN×N (4)

Because each channel of feature maps represent a specific
feature of an object, we use different mapping matrices for dif-
ferent channels. The relationship between the upsampled fea-
ture maps FC×WN×HN and the input feature maps fC×W×H
can be expressed as follows:

Fi,j,k = Mi,(j mod N),(k mod N) · fi,b j
N c,b

k
N c

(5)

Let LossF denote the loss of the output feature maps F .
Then during backpropagation, the gradients with respect to
Mi,m,n and fi,x,y are as follows:

∂LossF

∂Mi,m,n
=

W∑
x=1

H∑
y=1

fi,x,y (6)

∂LossFi,j,k
∂fi,x,y

=

{
Mi,(j mod N),(k mod N), b j

N c = x, b k
N c = y

0, otherwise
(7)

In our method, the weighted feature maps from res4, res5
are upsampled to match the scale of res3. Every pixel is
decomposed to a 2× 2 region according to the corresponding
mapping matrix.

3) Inception-Style Synthesis: After upsampling, multiple
feature maps are concatenated together along the channel
dimension. However, simple concatenating operation has two
drawbacks. Firstly, concatenated feature maps have too many
channels and their scale is too large. It is a big challenge
for computation capacities if we simply apply concatenated
feature maps to the following process. Secondly, concatenated
feature maps lack the internal relationship between different
channels because all the previous processes of FRN are
operated on each channel respectively. Therefore, we adopt an
Inception-style synthesis method on the concatenated feature
maps to composite multiple features together and reduce the
number of channels and scale of concatenated feature maps
simultaneously.

Inception module[13] has achieved great success on com-
puter vision tasks because of its efficient and delicate design.

Fig. 2. Inception-style synthesis: the overall structure is divided into three
paths: (a) convolution (kernel: 1x1, stride: 1), maxpooling (kernel: 2x2, stride:
1); (b) convolution (kernel: 1x1, stride: 1), convolution (kernel: 3x3, stride:
2); (c) convolution (kernel: 1x1, stride:1), convolution (kernel: 3x3, stride:
1), convolution (kernel: 3x3, stride: 2). The outputs of these three paths are
concatenated finally.

Our synthesis method depicted in Fig.2 takes advantage of
Inception module. After Inception-style synthesis, the number
of channels decreases from 3584 to 1024 and the scale of
feature maps is reduced by 50%.

C. Cascaded Multi-Scale Architecture

Fig. 3. Procedure of Cascaded Multi-Scale Architecture: (1) global detector
works on the entire image to detect large heads and obtain the rough location
of small heads; (2) multiple clips which have high probability of containing
small heads are generated and enlarged; (3) local detector works on the clips
and results in more accurate head detection; (4) results of both detectors are
merged and non maximum suppression is applied.

Small object detection has always been one of the most
challenging problems. Previous methods[14], [2], [6], [15]
focus on making use of features with small receptive field
or the resolution of images and feature maps to solve this
problem. Inspired by the attention mechanism of humans, we
propose a method named Cascaded Multi-scale Architecture
for small head detection. The procedure is shown in Fig.3.
The proposed architecture consists of two detectors named
global detector and local detector, both of which are R-FCN
combined with FRN.

At training stage, global detector and local detector are
trained separately. The main difference in training strategies
is the dataset. The global detector is trained on the original
dataset while the local detector is trained on the dataset
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Fig. 4. Detection results of different average scales ranging from 0px to
70px

generated from the original dataset. The newly generated
dataset aims to small head detection. For each image in the
original dataset, we crop a w×w clip centered at each small
head annotation and reserve the small head annotations whose
overlaps with the clip are more than 90%. Then, all the clips
are resized to f times larger, yielding the new dataset for the
local detector.

At testing stage, the global detector is applied on the original
image and produces the coordinates of big heads and the rough
location of small heads. Then, multiple w×w clips are cropped
from the input image. The clips are resized to f times larger
and used as the input of local detector. Local detector produces
better detection of small heads. Finally, the outputs of both
detectors are merged and non maximum suppression is applied
on the merged results.

The description above shows the strategy of our cascaded
multi-scale architecture. However, there are also some impor-
tant issues to be addressed:

1) How to distinguish small heads?: We define the average
scale of an annotation as the average of its width and height.
The performance of R-FCN with FRN w.r.t different average
scales ranging from 0px to 70px is shown in Fig.4. The Hmean
result of heads with average scale less than 20px is much lower
than heads with larger scales. Therefore, we regard heads with
average scale less than 20px as small heads and others as large
heads.

2) How to determine the zooming factor f?: The average
scales of small heads range from 8px to 20px and the average
value is around 16px. Our detector has a good performance on
scales larger than 20px. Considering the computational com-
plexity, f is set to 3. Then the average scales of small heads
range from 24px to 60px after clips are resized. Therefore,
the accuracy of small heads detection can be improved.

3) How to determine the scale of clips w?: When perform-
ing cropping operation, we reserve the small head annotations
whose overlaps with the clip are more than 90%. The small
head annotations whose overlaps with the clip are less than
90% and big head annotations are abandoned. Therefore,
the information contained in the overlapping area with the
abandoned annotations becomes noise. To determine the scale
of clips, we use a similar metric like signal-to-noise ratio in
information theory. We define the area of reserved annotations
as signal and the overlapping area of abandoned small heads

and large heads as noise. Let s, ns, nl denote the signal, the
noise from small heads, and the noise from large heads. The
scale ratio of large heads over small heads is around 4 which
means nl will overwhelm ns. To solve this problem, we add
weights to nl and ns and set the value of weights in inverse
proportion to the scale of large heads and small heads. So we
set wl to 0.2 and ws to 0.8. Let C denote the number of clips
and W denote the set of values of w. Then w is determined
by:

w = argmax
w∈W

∑C
c=1

sc
ws·ns

c+wl·nl
c

C
(8)

We set W = {64, 80, 96, 112, 128, 144, 160, 176}. The
biggest signal-to-noise ratio is 3.626 when w = 112. Therefore,
the best choice of w is 112.

4) How to generate clips at testing stage?: At testing stage,
we cannot crop a clip for each small heads in consideration
of efficiency. Let B denote the small head detection results of
global detector. For every bounding box in set B, we crop a
w × w clip centered at this bounding box and delete all the
bounding boxes reserved in the clip from set B. The cropping
operation is not finished until set B is empty.

TABLE I
COMPARATION BETWEEN PREVIOUS METHODS AND OUR

METHOD(MULTI-SCALE DENOTES THE CASCADED ARCHITECTURE BASED
ON R-FCN + FRN)

Method PartA PartB
P R H P R H

Faster R-CNN[7](VGG16) 0.86 0.78 0.82 0.87 0.81 0.84
YOLOv2[9] 0.91 0.61 0.73 0.74 0.67 0.70

SSD[2] 0.84 0.68 0.76 0.80 0.66 0.72
R-FCN[8] (ResNet-50) 0.87 0.78 0.82 0.90 0.82 0.86

R-FCN + FRN (ResNet-50)
(proposed) 0.89 0.83 0.86 0.92 0.84 0.88

Multi-Scale (proposed) 0.92 0.90 0.91 0.92 0.87 0.90

III. EXPERIMENTS

A. Datasets

We have collected and labeled a large-scale head detection
dataset named SCUT-HEAD. The proposed dataset consists
of two parts. PartA includes 2000 images sampled from
monitor videos of classrooms in a university with 67321
heads annotated. As classrooms of one university usually look
similar and the poses of people vary less, we carefully choose
representative images to gain variance and reduce similarity.
PartB includes 2405 images crawled from the Internet with
43930 heads annotated. We have labeled every visible head
with xmin, ymin, xmax and ymax coordinates and ensured
that annotations cover the entire head including the blocked
parts but without extra background. Both PartA and PartB
are divided into training and testing parts. 1500 images of
PartA are for training and 500 for testing. 1905 images of
PartB are for training and 500 for testing. Our dataset follows

The SCUT-HEAD dataset can be downloaded from https://github.com
/HCIILAB/SCUT-HEAD-Dataset-Release.
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the standard of Pascal VOC. Two representative images and
annotations are shown in Fig.5.

(a) (b)

Fig. 5. (a) An example image and annotations of PartA in SCUT-HEAD. (b)
An example image and annotations of PartB in SCUT-HEAD.

B. Implementation details

Global detector and local detector are trained using stochas-
tic gradient descent (SGD). Momentum and weight decay are
set to be 0.9 and 0.0005 respectively. Widths of images are
resized to 1024 while keeping their aspect ratios. Learning rate
is set to 0.001 during 0 ∼ 10k iterations, 0.0001 during 10k
∼ 20k iterations and 0.00001 during 20k ∼ 30k iterations.
As for anchors setting strategy, we generate anchors using
Kmeans with modified distance metrics[9]. Online hard ex-
ample mining (OHEM)[16] is also applied for more effective
training.

C. Results

We compare our method with other object detection meth-
ods. Results in Table I imply that our method has a great
improvement compared to other methods especially after ap-
plying the cascaded multi-scale architecture. We have also
compared the performance of R-FCN using different tech-
niques of FRN in Table II, which proves that our final design
of FRN reaches the best result. Note that the method with-
out Inception-style synthesis replaces it by convolution layer
(kernel size: 1x1, stride: 1) followed by max pooling (kernel
size: 2, stride: 2) and method without feature decomposition
upsampling replaces it by bilinear interpolation.

TABLE II
COMPARATION BETWEEN USING DIFFERENT TECHNIQUES OF FRN

(BASED ON PARTA OF SCUT-HEAD)

Technique Usage
Channel weighting

√ √ √

Inception-style synthesis
√ √

Feature decomposition upsampling
√

Result (Hmeans) 0.8412 0.8497 0.8591

D. Channel weighting

We plot the weights of channel weighting layers in Fig.6
to indicate the importance of different features. The two
channels with the biggest weights are the 20th channel of
res3 and the 748th channel of res5. From the visualization
of these two channels and the input image, we can have a
better understanding of the CNN and effectiveness of channel
weighting. The 20th channel of res3 is better at indicating

20
 !

748
 !

Fig. 6. Weights for channels of res3, res4 and res5 ([0, 511] for res3, [513,
1535] for res4 and [1536, 3583] for res5) and visualization of two features
with biggest weights.

Fig. 7. Visualization of the input image and some other feature maps from
res3 and res5 (the left two are from res3 and the right two are from res5).

the location of heads. The location of heads can be easily
estimated by light blue points. The 748th channel of res5 is
more suitable for the classification of heads and background.
Heads are indicated by the blue areas and the remaining areas
indicate the background. It is implied that the feature maps
at low level localize objects more precisely while the feature
maps at high level do better in classification.

Some other randomly selected feature maps are visualized
in Fig.7. Compared to the two feature maps shown in Fig.6,
the randomly selected feature maps don’t have implicit rela-
tionship with the goal of head detection.

The results using features with weights bigger than a
threshold are shown in Fig.8. When threshold ranges from
0.00 to 0.20, some features with small weights are abandoned.
However, it has a really small influence on the performance of

Fig. 8. Detection result using features with weight bigger than a threshold
(weights of unused features are set to zero). It implies that the features with
big weights contribute much to the final result while the features with small
weights do not really make sense.
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TABLE III
SMALL HEAD DETECTION PERFORMANCES

Average scale 0 ∼ 10 px 10 ∼ 20 px
Method P R H P R H
R-FCN 0.12 0.10 0.11 0.53 0.77 0.63

R-FCN + FRN 0.17 0.19 0.18 0.83 0.76 0.80
Multi-scale 0.63 0.57 0.60 0.93 0.84 0.88

the whole detection framework. Although all the features with
weights smaller than 0.20 are abandoned, the performance
only decreases by 0.05 which is negligible. The whole curve
only has two sharp drops. The first drop happens after the
748th channel of res5 is abandoned. The second drop happens
after the 20th channel of res3 is abandoned. The performance
drops to nearly zero. It is implied that our channel weighting
layers use features effectively and alternatively towards the
goal of head detection.

From the above analysis, we can conclude that channel
weighting performs feature selection very well. The most
useful features for the specific goal of head detection are
selected and made use of.

E. Small head detection

We improve small head detection through two ways. The
first is FRN which combines multiple features at different
levels together. The feature maps at low levels have smaller
receptive field and more detailed information which are ben-
eficial to small head detection. The second is the cascaded
multi-scale architecture. It is designed for small head detec-
tion specifically through the combination of global and local
information. The results of small heads detection are shown
in Table III.

F. Other datasets

We also compare our method on Brainwash dataset[17]
in Table IV. Brainwash dataset contains 91146 heads anno-
tated in 11917 images. Our method also achieves state-of-
the-art performance on this dataset compared with several
baselines including context-aware CNNs local model (Con-
local)[18], end-to-end people detection with Hungarian loss
(ETE-hung)[17], localized fusion method (f-localized)[19] and
R-FCN[8].

TABLE IV
COMPARATION ON BRAINWASH DATASET

Method Con-local ETE-hung R-FCN f-localized our method
AP 45.4 78.4 84.8 85.3 88.1

IV. CONCLUSION

In this paper, we have proposed a novel method for head
detection using Feature Refine Net (FRN) and cascaded multi-
scale architecture. FRN combines multi-scale features and
takes advantage of the most useful features. The cascaded
multi-scale architecture focuses on small heads detection.
Owing to these techniques, our method achieves a great

performance on indoor-scene head detection. Furthermore, we
built a dataset named SCUT-HEAD which is for indoor-scene
head detection.
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